Движение планет. Законы Кеплера.

 

Первый закон Кеплера:

 

Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. Форму эллипса степень его сходства с окружностью будет тогда характеризовать отношение: e=c/a, где с - расстояние от центра эллипса до его фокуса; а - большая полуось. Величина "е" называется эксцентриситетом эллипса. При с=0 и е=0 эллипс превращается в окружность.

 

Второй закон Кеплера:

 

Каждая планета движется в плоскости, проходящей через центр Солнца, причем площадь сектора орбиты, описанная радиус-вектором планеты, изменяется пропорционально времени. Применительно к нашей Солнечной системе, с этим законом связаны два понятия: перигелий - ближайшая к Солнцу точка орбиты, и афелий - наиболее удаленная точка орбиты. Тогда можно утверждать, что планета движется вокруг Солнца неравномерно: имея линейную скорость в перигелии больше, чем в афелии.

 

Третий закон Кеплера:

 

Квадраты времен обращения планеты вокруг Солнца относятся как кубы их средних расстояний от Солнца. Этот закон, равно как и первые два, применим не только к движению планет, но и к движению как их естественных, так и искусственных спутников.

T12 / T22 = a13 / a13

, где T1 и T2 — периоды обращения двух планет вокруг Солнца, а a1 и a2 — длины больших полуосей их орбит.

Ньютон установил, что гравитационное притяжение планеты определенной массы зависит только от расстояния до неё, а не от других свойств, таких, как состав или температура. Он показал также, что третий закон Кеплера не совсем точен — в действительности в него входит и масса планеты:

 T12 (M + m1) / T22 (M + m2) = a13 / a13

 , где M — масса Солнца, а m1 и m2 — массы планет

Кеплеровские законы были уточнены и объяснены на основе закона всемирного тяготения Исааком Ньютоном. Закон же всемирного тяготения гласит:

Сила F взаимного притяжения между материальными точками массами m1 и m2, находящимися на расстоянии r друг от друга, равна: F=G * m1m2 / r2, где G - гравитационная постоянная. Закон открыт Ньютоном также в XVII веке (понятно, что на основе законов Кеплера).

 

В первых двух законах речь идет о специфике орбитальных траекторий отдельно взятой планеты. Третий закон Кеплера позволяет сравнить орбиты планет между собой. В нем говорится, что чем дальше от Солнца находится планета, тем больше времени занимает ее полный оборот при движении по орбите и тем дольше, соответственно, длится «год» на этой планете. Сегодня мы знаем, что это обусловлено двумя факторами. Во-первых, чем дальше планета находится от Солнца, тем длиннее периметр ее орбиты. Во-вторых, с ростом расстояния от Солнца снижается и линейная скорость движения планеты.

Обратная связь

Имя отправителя *:
E-mail отправителя *:
Тема письма:
Текст сообщения *:
Код безопасности *:

Бесплатный хостинг uCoz